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Abstract

Background: Fatty liver disease (FLD) arises from the accumulation of fat in the liver and may cause liver inflammation, which,
if not well controlled, may develop into liver fibrosis, cirrhosis, or even hepatocellular carcinoma.

Objective: We describe the construction of machine-learning models for current-visit prediction (CVP), which can help physicians
obtain more information for accurate diagnosis, and next-visit prediction (NVP), which can help physicians provide potential
high-risk patients with advice to effectively prevent FLD.

Methods: The large-scale and high-dimensional dataset used in this study comes from Taipei MJ Health Research Foundation
in Taiwan. We used one-pass ranking and sequential forward selection (SFS) for feature selection in FLD prediction. For CVP,
we explored multiple models, including k-nearest-neighbor classifier (KNNC), Adaboost, support vector machine (SVM), logistic
regression (LR), random forest (RF), Gaussian naïve Bayes (GNB), decision trees C4.5 (C4.5), and classification and regression
trees (CART). For NVP, we used long short-term memory (LSTM) and several of its variants as sequence classifiers that use
various input sets for prediction. Model performance was evaluated based on two criteria: the accuracy of the test set and the
intersection over union/coverage between the features selected by one-pass ranking/SFS and by domain experts. The accuracy,
precision, recall, F-measure, and area under the receiver operating characteristic curve were calculated for both CVP and NVP
for males and females, respectively.

Results: After data cleaning, the dataset included 34,856 and 31,394 unique visits respectively for males and females for the
period 2009-2016. The test accuracy of CVP using KNNC, Adaboost, SVM, LR, RF, GNB, C4.5, and CART was respectively
84.28%, 83.84%, 82.22%, 82.21%, 76.03%, 75.78%, and 75.53%. The test accuracy of NVP using LSTM, bidirectional LSTM
(biLSTM), Stack-LSTM, Stack-biLSTM, and Attention-LSTM was respectively 76.54%, 76.66%, 77.23%, 76.84%, and 77.31%
for fixed-interval features, and was 79.29%, 79.12%, 79.32%, 79.29%, and 78.36%, respectively, for variable-interval features.

Conclusions: This study explored a large-scale FLD dataset with high dimensionality. We developed FLD prediction models
for CVP and NVP. We also implemented efficient feature selection schemes for current- and next-visit prediction to compare the
automatically selected features with expert-selected features. In particular, NVP emerged as more valuable from the viewpoint
of preventive medicine. For NVP, we propose use of feature set 2 (with variable intervals), which is more compact and flexible.
We have also tested several variants of LSTM in combination with two feature sets to identify the best match for male and female
FLD prediction. More specifically, the best model for males was Stack-LSTM using feature set 2 (with 79.32% accuracy), whereas
the best model for females was LSTM using feature set 1 (with 81.90% accuracy).
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Introduction

Background
Prior research on the use of machine learning for early disease
prediction has focused on diabetes, fatty liver disease (FLD),
hypotension, and other metabolic syndromes [1]. This study
focused on the prediction of FLD, which is widespread in
Taiwan, and could lead to liver cirrhosis, fibrosis, and liver cell
death. If left untreated for up to 3 years, FLD has a 25% chance
of developing into nonalcoholic steatohepatitis and a 10%-15%
chance of developing into liver cirrhosis [2,3]. Moreover, FLD
increases the prevalence of diabetes, metabolic syndrome, and
obesity, creating enormous medical and economic burdens for
society. This situation raises an urgent need for early and precise
prediction, followed by personalized treatment and lifestyle
management. Typically, FLD has been classified into two types
according to its cause: alcohol-related fatty liver disease (AFLD)
and nonalcoholic fatty liver disease (NAFLD). AFLD is
commonly caused by excessive alcohol consumption, whereas
NAFLD is due to other more complex factors. Although most
prior research has focused on NAFLD prediction rather than
AFLD prediction [4-8], there is no inherent reason to conduct
separate prediction processes. The previous focus on NAFLD
is partly due to the datasets used being insufficiently large to
predict both types of FLD. Previous studies have relied on
leave-one-out (LOO) cross-validation to avoid overfitting [4-10]
on these small datasets. Some prior studies have performed
feature selection through human intervention rather than
automatic selection [7,11-14], although this is not a common
practice in machine learning.

Recently, machine learning has been used extensively in
medicine and health care. Dealing with large datasets with many
features requires efficient methods to reduce the computing
time. We adopted one-pass ranking (OPR) for automatic feature
selection, with accuracy similar to the features selected by

sequential forward selection (SFS). OPR enables finding good
features for current-visit prediction (CVP) and next-visit
prediction (NVP). The contributions of this paper can be
summarized as follows. First, we compared the performance of
OPR and SFS for automatic feature selection, demonstrating
that OPR offers great efficiency with decent accuracy when
dealing with a large-dimensional dataset. Second, in addition
to CVP, we propose the task of NVP, which is much more
important for practicing preventive medicine. To our knowledge,
this is the first attempt to perform NVP on FLD. Third, we
modeled NVP as a sequence classification problem and proposed
two feature sets with fixed or variable intervals for the long
short-term memory (LSTM) classifier and some of its variants.
Before describing the study, we first provide a review of some
important prior work on FLD prediction along with a brief
overview of automatic feature selection in machine learning.

Related Work

Literature Survey
Table 1 summarizes the differences between this study and prior
research. The dataset used in this study is much larger and
covers a much longer period. All of the prior research [4-8,11]
summarized in Table 1 used smaller datasets, with sample sizes
ranging from less than 100 to 11,000 individuals, covering
periods ranging from less than 1 year to 2 years at most.
Furthermore, most of these studies only used male data for
analysis, such as Jamali et al [5], Yip et al [8], and Wu et al [7],
with data sizes below 600 individuals. Although Birjandi et al
[4], Islam et al [11], and Ma et al [6] used both male and female
data for analysis, their data sizes were at most 11,000
individuals, which is still much smaller than the dataset used
in this study. The dataset used in this study is far larger than
other datasets reported in the literature, and is thus suitable for
separate construction of male and female models, which are
much more robust and reliable.

Table 1. Comparison of prior research and this study for fatty liver disease (FLD) prediction.

Data source
Next-visit
predictionGenderFLD typeFeature selectionYears of study

Sample
sizeReference

Health screening centersNoMale/FemaleNAFLDaYes2012<1700Birjandi et al [4]

HospitalNoMaleNAFLDNo2012-2014<100Jamali et al [5]

HospitalNoMaleNAFLDYes2015<1000Yip et al [8]

HospitalNoMale/FemaleNAFLD/AFLDbYes2012-2013<1000Islam et al [11]

HospitalNoMale/FemaleNAFLDYes2010<11,000Ma et al [6]

HospitalNoMaleNAFLD/AFLDNo2009<600Wu et al [7]

Health screening datasetYesMale/FemaleNAFLD/AFLDYes2009-2016>150,000This study

aNAFLD: nonalcoholic fatty liver disease.
bAFLD: alcoholic fatty liver disease.
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In various application domains, LSTM has proven to be the
state-of-the-art sequence classifier that can achieve better results
than classical methods. For instance, Kim et al [15] developed
an epidemic disease spread and economic situation model based
on LSTM to predict the economic impact of future COVID-19
spread. Pal et al [16] proposed an LSTM framework to predict
a country-based COVID-19 risk category at a given time with
a dataset from 180 countries. Zhang et al [17] used LSTM to
reproduce soil stress-strain behavior, demonstrating better
accuracy than other models. For stock price prediction, Sunny
et al [18] proposed an LSTM-based framework to forecast stock
trends with high accuracy. In surface-guided radiation therapy,
Wang et al [19] created a framework to predict internal liver
motion signals and external respiratory motion signals, finding
that LSTM can achieve better results. Moreover, Qiao et al [20]
proposed a high-precision LSTM model to monitor mooring
line responses by using the vessel motion as input. The superior
performance of LSTM in previous studies motivated us to use
this approach for NVP in the context of FLD prediction.

Automatic Feature Selection
Automatic feature selection is an important step in machine
learning, since it can identify a feature subset to construct a
better model while requiring less computing time for training
and testing. Automatic feature selection methods can be divided
into three categories: wrappers, filters, and embedded methods.
Wrapper methods use a classifier to score the feature subsets,
which produces accurate results but is time-consuming. Filter
methods use a proxy measure instead of accuracy to score a
feature subset, which is efficient but does not always produce
a good model since the proxy measure does not always relate
to classification accuracy [21]. Embedded methods perform
feature selection as part of the model construction process,
which tends to lie between wrappers and filters in terms of
accuracy and computational complexity [22,23]. This study
used more accurate wrapper methods for feature selection,
including OPR and SFS [24].

Not all approaches covered in the literature use the wrapper
methods for feature selection. For example, as shown in in Table

1, Wu et al [7] manually selected only 10 predictor variables,
including age, gender, systolic blood pressure, diastolic blood
pressure, abdominal girth, glucose AC, triglyceride, high-density
lipoprotein cholesterol, serum glutamic-oxaloacetic
transaminase-aspartate aminotransferase, and serum
glutamic-pyruvic transaminase-alanine aminotransferase, and
then derived their weights by information gain without further
verifying their ranking by classification accuracy.

Common Classifiers Used in This Study
This study used different conventional classifiers for CVP,
including Adaboost [25], support vector machine (SVM) [26],
logistic regression (LR) [27], random forest (RF) [28,29],
Gaussian naïve Bayes (GNB) [30], decision tree C4.5 [31], and
classification and regression trees (CART) [32]. For NVP, since
the input is a variable-length sequence, we used LSTM [33],
bidirectional LSTM (biLSTM) [34], Stack-LSTM [35],
Stack-biLSTM [36], and Attention-LSTM [37].

Methods

Study Design and Process

Flowchart
This study explored feature selection schemes for CVP and
NVP, and proposes two feature sets for NVP using LSTM.
Figure 1 shows the flowchart for FLD prediction. First, we
needed to perform data preprocessing and cleaning, which is
covered in further detail in the Dataset subsection below. We
then used different feature selection methods and different
classifiers for the two prediction types (CVP and NVP). As
shown in Figure 2, we used automatic feature selection (such
as OPR or SFS) to select the most critical features from a given
classifier, including K-nearest neighbor classification (KNNC),
and then adopted a procedure for performance evaluation (such
as k-fold cross-validation). Following feature selection, we
constructed other more complicated models for prediction and
evaluation.
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Figure 1. Flowchart of current-visit prediction and next-visit prediction for fatty liver disease (FLD).

Figure 2. Flowchart of current-visit prediction (CVP) and next-visit prediction (NVP) for fatty liver disease (FLD) with different classifiers. OPR:
one-pass ranking; SFS: sequential forward selection; KNNC: k-nearest neighbor classifier; SVM: support vector machine; LSTM: long short-term
memory; biLSTM: bidirectional long short-term memory.

CVP Model
Although fatty liver has no special symptoms, there is a certain
chance that fatty hepatitis will develop in the long term, and it
may progress to serious liver diseases such as cirrhosis, liver
failure, and even liver cancer [38,39]. Through the CVP model,
the risk of FLD can be predicted directly. For those with a low

FLD risk, there is no need to spend time and money in arranging
abdominal ultrasound examinations. However, groups with a
high risk of FLD are recommended to receive an abdominal
ultrasound for early detection and prevention of significant liver
diseases. Therefore, CVP can achieve the goal of rapid screening
with timely and appropriate intervention, if necessary.
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For this task, CVP uses a classifier with all important
information (including lab and questionnaire results) at the
current visit as inputs to predict whether or not the patient
currently has FLD. Correct execution of CVP with selected
features can help the doctor better understand what features are
more likely to contribute to FLD. Sufficiently high CVP
accuracy allows patients with a low FLD risk to forego a
time-consuming and costly abdominal ultrasound. That is, CVP
can be used for rapid screening at medical clinics that do not
have the equipment or specialists needed to manually diagnose
FLD. This can effectively reduce staff and equipment
requirements at clinics and hospitals, which is of particularly
importance in the era of the COVID-19 pandemic.

For CVP feature selection, we used two wrapper-based methods,
OPR and SFS, with a simple classifier of KNNC and LOO
cross-validation for performance evaluation. Following this
rapid feature selection, we used the selected features for model
training and evaluation with other advanced classifiers, including
Adaboost, SVM, LR, RF, GNB, decision trees C4.5, and CART.

NVP Model
Early prediction also plays an essential role in disease
prevention, especially for chronic diseases. With NVP, our
system can even predict the next visit result, allowing physicians
to arrange abdominal ultrasound examinations or other

appropriate interventions for patients with a high future risk of
FLD. For this task, we used a sequence classifier with all
historical information (up to the current visit) as inputs to predict
whether or not the patient will be diagnosed with FLD at the
next visit. NVP is more important than CVP from the
perspective of preventive medicine. If the patient is predicted
to have a high probability of FLD risk at the next visit, the
physician can suggest lifestyle changes (eg, diet, smoking,
alcohol consumption) to effectively modify the key features
that contribute to FLD in NVP, along with other appropriate
interventions, including abdominal ultrasound at the next health
check.

For feature selection in NVP, we used OPR with the LSTM
classifier and a hold-out test (ie, training and testing) for
performance evaluation. Note that we could not use SFS for
feature selection since it is too time-consuming for LSTM. If
we want to create equal-spaced features for each month between
two visits for LSTM, we need to perform linear interpolation
between these two visits for each subject. For lab test features
(with continuous numerical values), this is achieved by spline
interpolation with the piecewise cubic method. For questionnaire
features (with categorical values of integers), this is achieved
by linear interpolation with rounding off to the nearest labels,
as shown in Figure 3.

Figure 3. Interpolation for the questionnaire features between any two medical checkups.

Feature Selection
As mentioned above, there are three categories of feature
selection methods: wrappers, filters, and embedded methods
[40]. In general, classification accuracy is strongly dependent

on wrapper-selected features; however, this is a time-consuming
approach. To strike a balance between efficiency and
effectiveness, we compared two wrappers, OPR and SFS, for
rapid feature selection based on our large dataset and a given
classifier, as shown in Figure 4.

Figure 4. Conceptual diagram of wrappers that interact with a given classifier to select critical features.
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Dataset

General Characteristics of the Dataset
This study is primarily related to the MJ-FLD dataset [41],
which was collected from a medical checkup clinic in Taipei
from 2009 to 2016. This large dataset consists of 160,620 unique
(people) visits (88,056 males and 72,546 females) with 446

features (also known as biodata) in total, including 289 from
questionnaires and 157 from lab tests. Figure 5 shows the annual
visit counts of males and females per year. Our goal is to predict
whether a given person has FLD or not at the current and next
visits. The following subsections explore the dataset in various
ways. The sample sizes indicated refer to the total number of
visits for all patients.

Figure 5. Visit counts for males (blue) and females (red) per year in the MJ-FLD dataset and statistics of no fatty liver disease (NFLD) and fatty liver
disease (FLD) per year. The drop from 2013 to 2014 is likely due to the implementation of Taiwan’s Personal Data Protection Act.

Data Size Over 8 Years
Figure 5 shows the annual visit counts of males and females
per year of the dataset. The large disparity between 2013 and
2014 is likely due to enforcement of Taiwan’s Personal Data
Protection Act that set opt-in as the default for participation in
medical research.

Therefore, between 2013 and 2014, the male count falls from
11,184 to 6770 (60.53% decrease), and the female count falls
from 8896 to 4958 (55.73% decrease). Furthermore, over this
8-year period, the class size ratio of no fatty liver disease
(NFLD) vs FLD was 0.66 (34,885 vs 53,171) for males and
2.02 (48,574 vs 23,990) for females. For each year from 2009
to 2016, the class size ratios of NFLD vs FLD were 0.69, 0.67,
0.63, 0.63, 0.66, 0.68, 0.64, and 0.63 for males, and 2.09, 2.16,

2.0, 1.93, 1.94, 2.1, 1.89, and 1.96 for females, respectively
(Figure 5). These statistics indicate that the overall dataset is
not highly imbalanced, and the class size ratios broken down
by gender and year do not vary excessively.

Dataset Properties
Another characteristic of the dataset is its high ratio of missing
values, as shown in Figure 6, which plots the percentage of
missing values for all features and the top 20 features. Since
the features with missing value ratios of 90% or higher are hard
to impute, these 17 features were eliminated, leaving 252
features for further processing. The histograms of important
features for males and females are shown in Figure 7. Some
features such as waist-hip ratio displayed very different
gender-dependent histograms.
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Figure 6. The ratio of missing values for all features and for the top 20 features in the MJ-FLD dataset.

Figure 7. Histograms of important features of the MJ-FLD dataset for males (blue) and females (red). NFL: no fatty liver; FL: fatty liver; FAT: body
fat; WC: waist circumference; WHR: waist-to-hip ratio; WEI: weight; DM_FG: diabetes for fasting glucose; TG: triglyceride; CHOL: total cholesterol;
HDLC: high-density lipoprotein cholesterol; LDLC: low-density lipoprotein cholesterol; GPT: serum glutamic-pyruvic transaminase; DRINKALCGRAM:
alcohol per gram; METAEQUI: metabolic equivalent for exercise per week; GGR: serum glutamic-oxaloacetic transaminase to glutamic-pyruvic
transaminase ratio.

BMI Progression Over 8 Years
Some features such as BMI are strong indicators of FLD. Figure
8 plots the yearly average BMI for FLD and NFLD, broken
down by males, females, and overall. Six curves are clearly
divided into two groups of FLD and NFLD, with BMI for FLD

consistently higher than that of NFLD. Within the same class
(FLD or NFLD), males usually have a higher BMI than females.
Moreover, the three curves for FLD show higher variance than
the other three curves for NFLD, indicating that FLD patients
might have a more dramatic BMI progression.
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Figure 8. Progression of yearly average BMI over 8 years, broken down by [FLD, NFLD] x [male, female, overall] into 6 curves. FLD: fatty liver
disease; NFLD: no fatty liver disease.

Data Preprocessing
Our dataset is based on health screening results from individuals,
some of whom underwent multiple screenings at different
intervals with different sets of screening items. As a result, there
are several missing values in the dataset that needed to be
imputed before further processing. Moreover, the questionnaires
also changed over these 8 years when the dataset was compiled;
therefore, we needed to consolidate the answers to different
questionnaires of the same type.

To perform missing values imputation in our dataset, we used
the mean for numerical features and the mode for questionnaire
features. This is a quick and dirty method, especially for such
a large dataset. Missing value imputation could be accomplished
using other more complicated methods such as MICE
(Multivariate Imputation by Chained Equations) [42], which
imputes each missing value sequentially by another machine
learning method. The process iterates until all of the imputed
values converge, which usually takes a long time and is thus
not feasible for a large dataset with many missing values.

To consolidate the answers to different questionnaires of the
same type in the dataset, we needed to use some heuristics to
derive consistent numerical values as features for machine
learning. For instance, “grams of alcohol” represents the average
weekly alcohol intake in grams [43,44], which was derived by
combining some questionnaire items related to drinking from
the MJ-FLD dataset. Similarly, to derive “weekly exercise
metabolic equivalent,” we needed to combine some
questionnaire items related to exercise.

In summary, the steps involved in data preprocessing were
performed as follows:

1. Deletion of useless features: Our first step in data
preprocessing was to drop features that are apparently not
related to FLD, such as “cervical cancer,” “prostate cancer,”

“other forms of cancer,” “other hereditary diseases,”
“Chinese medicine,” and “has your mother or sister had
breast cancer, ovarian cancer, or endometrial cancer?”

2. Missing value handling: Missing values in the dataset were
replaced by the average for numerical features and by the
mode for categorical features.

3. Feature conversion: To create consistent features from
questionnaires, we consolidated highly related
questionnaires and expressed the corresponding responses
in numeric terms. For example, the feature “grams of
alcohol consumption” was derived from responses to the
questionnaire items “type of drink,” “amount of drink,”
“drink or not,” and “alcohol density.” Similarly, the feature
“weekly exercise metabolic equivalent” was derived from
responses to the questionnaire items “type of sport,”
“frequency of sport,” and “time for sport.”

4. Deletion of redundant features: Some highly redundant
features were deleted from the dataset, such as “BMI,”
“systolic/diastolic blood pressure while lying down left
arm,” and “systolic/diastolic blood pressure while lying
down right arm.”

5. Feature-wise normalization: This was achieved by z-score
normalization to have a zero mean and unit variance for
each feature:

where is the sample mean of feature x and S is the sample
standard deviation of feature x.

Environment and Specification
All experiments were performed on a 64-bit Windows-10 server,
with an Intel Xeon Silver 4116 CPU at 2.10 GHz, two NVIDIA
Quadro GV100 GPUs, 256 GB RAM, 1-TB hard disk, and
Matlab R2020b (9.8.0.1538559), and python 3.8.2, scikit-learn
0.24.1, TensorFlow-GPU 2.4.1.
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All of the models in this study were constructed based on the
MJ-FLD dataset [41]. Each of our experiments was designed
with the goal of finding something meaningful in the dataset;
therefore, we may use different ways to partition the dataset
into subsets for training, validation, and testing for different
experiments. We also performed necessary dataset preprocessing
before using the data for modeling, including missing value
imputation, feature consolidation, and feature-wise Z-score
normalization, as explained above.

Results

Feature Selection With Various Methods
To investigate the effectiveness of different feature selection
methods, we compared the computer-selected features with
expert-suggested FLD features. All of the expert-suggested
features are listed in Table 2, with a brief explanation for each.
For instance, the well-known high-risk factors (or features)
suggested by domain experts included BMI, body fat, and waist
circumference. The critical factors related to AFLD are also
listed, including “drinkalcgram” (average alcohol consumption
in grams) and “drinkyear” (how many years the patient has been
drinking alcohol).
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Table 2. Features of fatty liver disease, including those suggested by domain experts or selected by one-pass ranking (OPR) and sequential forward
selection (SFS) for current-visit prediction and next-visit prediction.

OPR (Feature set 2)OPR (Feature set 1)SFSOPRSuggested
by experts

ExplanationFeatures

MatchSelected
by OPR

MatchSelected
by OPR

MatchSelected
by SFS

MatchaSelected
by OPR

✓✓✓Ageage

✓Blood typeblood type

✓✓✓Bone mineral densitybmd

✓✓✓✓✓✓✓✓✓Body mass indexbmi

✓✓Chest circumferencecc (cm)

✓✓✓Chest circumference during inspi-
ration

cci (cm)

✓Carcinoembryonic antigencea (ng/ml)

✓✓✓✓✓✓✓The ratio of chol/hdlcch

✓✓✓Total cholesterolchol (mg/dl)

✓Diastolic blood pressurediastolic

✓Alcohol per gramdrinkalcgram
(g)

✓How many years have you been
drinking?

drinkyear

✓Eosinophilse (%)

✓Red blood cellsery (106/µl)

✓✓✓✓✓✓✓✓✓Body fatfat (g)

✓✓✓✓✓✓✓✓✓Diabetes mellitus fasting glucosefg (mg/dl)

✓How many servings of bread do
you eat?

food18

✓Do you add jam or honey to your
food?

food19

✓Do you add sugar to your coffee,
tea, cola/soda, fruit juices, or
other beverages?

food20

✓✓✓How many servings of your food
intake are fried in oil?

food21

✓✓✓✓✓✓✓✓✓The ratio of got/gptggr

✓✓✓✓Gamma-glutamyl transferaseggt (IU/L)

✓✓✓✓Serum glutamic-oxaloacetic
transaminase (sGOT)

got (IU/L)

✓✓✓✓✓✓✓Serum glutamic-pyruvic
transaminase (sGPT)

gpt (IU/L)

✓✓✓✓Hip circumferencehc (cm)

✓✓✓✓✓✓✓✓✓High-density lipoprotein choles-
terol

hdlc (mg/dl)

✓✓Heighthei (cm)

✓Hematocrithema (%)

✓✓✓Low-density lipoprotein choles-
terol

Ldlc (mg/dl)

✓✓White blood cellsleu (103/ml)

✓Mean corpuscular volumemcv (fl)
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OPR (Feature set 2)OPR (Feature set 1)SFSOPRSuggested
by experts

ExplanationFeatures

MatchSelected
by OPR

MatchSelected
by OPR

MatchSelected
by SFS

MatchaSelected
by OPR

✓✓✓Steroidsmdrug10

✓✓✓Medicine for asthmamdrug8

✓✓✓Metabolic equivalent for exercise
per week

metaequi

✓Neutrophilsn (%)

✓Phosphorusp (mg/dl)

✓✓Pulse ratepul
(beat/mint)

✓In the last 3 months, have you
lost weight by more than 4 kg?

relate33b

✓Have your defecation habits
changed?

relate17a

✓Sediment epithelial cells highsdephi
(/HPF)

✓Sediment red blood cells highsdrhi (/HPF)

✓Sediment white blood cells highsdwhi
(/HPF)

✓Specific gravitysg

✓Have you ever smoked?smokeornot

✓Systolic blood pressuresystolic

✓Total bilirubintb (mg/dl)

✓✓✓✓✓✓✓✓✓Triglyceridetg (mg/dl)

✓Total proteintp (g/dl)

✓✓Thyroid stimulating hormonetsh (µIU/ml)

✓✓Uric acidua (mg/dl)

✓Visual acuity (naked left eye)vanl

✓✓✓✓✓✓✓✓✓Waist circumferencewc (cm)

✓✓✓✓✓✓✓Weightwei (kg)

✓✓✓✓✓Waist-to-hip ratioWhr

✓What is your level of activity at
work?

Workstreng

aIndicates a match with the features selected by domain experts based on the literature.

Intersection Over Union and Coverage
To evaluate the similarity between the feature sets manually
selected by human experts (set S1) and automatically selected
by OPR/SFS (set S2), we used two similarity indices,
intersection over union (IoU) and coverage, defined as follows:

IoU(S1, S2)=|S1∩S2|/|S1∪S2|

Coverage(S1, S2)=|S1∩S2|/|S1|

Both similarity indices range from 0 to 1, and a higher value
indicates higher similarity.

Experiment 1: CVP With Optimum Years of Training
Data and Feature Selection
Given the size of the dataset, we can explore it in different
directions. First, we needed to confirm the modeling accuracy
of CVP across years, which was achieved using the previous
year data for training and the current year data for testing. The
test accuracy for each year is shown in Figure 9.

Next, we wanted to further explore the optimum duration in
years considered for modeling in feature selection. In general,
using a long period of historical data for modeling may result
in mismatching with the test data since the optimum model may
change over time. However, a short period of historical data
may not be sufficient for stable model construction. As a result,
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we needed to identify the optimum duration in years where the
training data are obtained for predicting the data in 2016. More
specifically, we defined seven subtasks for training data in
intervals (2015, 2014-2015, 2013-2015, 2012-2015, 2011-2015,
2010-2015, 2009-2015), and the test data were from 2016. This
arrangement is illustrated in Figure 10. Moreover, we performed
feature selection for each subtask to select the best features. The
modeling specifications are as follows: dataset, male part of the
MJ-FLD dataset; classifier, KNNC; feature selection, OPR with
LOO cross-validation for the performance index to select the

most important 24 features (this number was used to match the
number of features suggested by the domain experts.)

The result is shown in Figure 11, where the best interval was
2012-2015, achieving the best test accuracy of 80.00%. The
corresponding OPR-selected features are shown in Figure 12.
For comparison, if we used the same training/test pair to evaluate
SFS-selected and expert-suggested 24 features, the accuracies
were 78.37% and 79.78%, respectively. Using the same
evaluation steps on female data produced the same result; that
is, the best interval was 2012-2015.

Figure 9. Test accuracy for each year using the previous year data for training and the current year data for testing for both males and females.

Figure 10. The models of seven subtasks for training in intervals (2015, 2014-2015, 2013-2015, 2012-2015, 2011-2015, 2010-2015, 2009-2015) and
2016 for testing, for males.
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Figure 11. The best year interval for the model of male fatty liver disease prediction is 2012-2015.

Figure 12. Features selected by one-pass ranking based on the standard set, in descending order of recognition rate.

For easy reference, we refer to the training set of the interval
2012-2015 and the test set from 2016 as the “standard set.”
Based on the standard set, we applied OPR and SFS, as shown
in Table 3. The result indicated that SFS is slightly better than
OPR in terms of classification accuracy (80.92% vs 80.32%).
In terms of the selected features, SFS was also slightly better
than OPR, with 50.00% vs 45.83% for coverage rate and 33.33%
vs 29.73% for IoU. However, SFS achieved these marginal
improvements at the cost of computing time, which was
approximately three times slower than that of OPR. The features
selected by OPR, SFS, and domain experts are listed in Table
2, including the most common features for FLD with a simple

explanation. In the table, any matched features selected by OPR
or SFS are indicated with a check mark in the “Match” column.

Finally, we tested other classifiers on the standard set, including
KNNC, Adaboost, SVM, LR, RF, GNB, decision trees C4.5,
and CART, as shown in Figure 13. The classifiers of Adaboost
and SVM showed higher accuracy than the others. We also
noticed that for all classifiers, the accuracy for the females
outperformed that for the males, which will be discussed in the
next subsection. The area under the receiver operating
characteristic curve (AUROC), precision, recall, and F1 scores
for these 7 classifiers are shown in Table 4. In particular, the
AUROC values for these classifiers for CVP were all higher
for females than for males.
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Table 3. Comparison of one-pass ranking (OPR) and sequential forward selection (SFS) in terms of feature selection and classification.

SFSOPRMetric

Feature selection

33.33% (12/36)29.73% (11/37)Intersection over union

50.00% (12/24)45.83% (11/24)Coverage

80.92%80.32%Classification accuracy

Figure 13. Performance of various classifiers on the standard set. KNNC: k-nearest neighbor classifier; SVM: support vector machine; LR: logistic
regression; RF: random forest; GNB: Gaussian naive Bayes; CART: classification and regression trees.
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Table 4. Performance metrics for eight different classifiers.

AccuracyF1 scoreRecallPrecisionAUROCaClassifier

KNNCb

80.00%0.790.820.770.80Males

82.45%0.720.680.770.87Females

Adaboost

77.51%0.820.850.800.85Males

83.07%0.740.700.770.90Females

SVMc

77.97%0.830.860.800.85Males

83.44%0.740.690.800.90Females

LRd

76.94%0.810.780.830.85Males

82.59%0.760.820.710.90Females

RFe

77.01%0.810.790.830.85Males

82.90%0.760.800.720.90Females

GNBf

72.53%0.760.700.830.79Males

82.23%0.720.670.770.88Females

DTg (C4.5)

75.95%0.800.760.830.83Males

79.30%0.720.780.670.87Females

CARTh

73.85%0.790.780.790.73Males

76.72%0.680.750.630.76Females

aAUROC: area under the receiver operating characteristic curve.
bKNNC: k-nearest-neighbor classifier.
cSVM: support vector machine.
dLR: logistic regression.
eRF: random forest.
fGNB: Gaussian naïve Bayes.
gDT: decision tree.
hCART: classification and regression trees.

Experiment 2: Hormonal Influence in CVP
As shown in Figure 13, the accuracy for females was
consistently higher than that for males. This may be due to data
imbalance, which is further addressed in the Discussion section.
Moreover, we can also explore the influence of hormones for
both males and females in CVP. To this end, we assumed that
menopause/andropause occurs at a certain age and then
performed modeling/evaluation before and after the age to
determine the difference in prediction accuracy. More
specifically, we split the whole dataset (2009-2016) into two
subsets, “before” and “after,” according to the assumed age of
menopause. Within each subset, the period of 2009-2015 was

used for training and 2016 was used for testing with the naïve
Bayes classifier. The results are shown in Figure 14, in which
we assumed that menopause/andropause occurs at ages 53, 54,
55, 56, and 57, and derived the accuracy before and after
menopause/andropause for both males and females. We
observed that the “before” accuracy is consistently higher than
that of “after” for females. Moreover, the accuracy differences
between “before” and “after” were much higher for females
than for males. This is because female hormones can maintain
the basal metabolic rate at a certain level before menopause
such that the accumulation of fat in the internal organs is less
likely to occur, thus improving the FLD prediction accuracy.
After menopause, women do not have normal hormone
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secretion, leading to a less balanced body status and more
challenging FLD prediction. For fatty liver, lifestyle intervention
is usually recommended for treatment. Chalasani et al [45]
reviewed several population-based studies and pointed out that

because body fat, sex hormone metabolism, and lifestyle have
gender differences, the occurrence of FLD will vary by gender
[46]. Therefore, we believe that the accuracy of CVP will also
differ due to these indicators.

Figure 14. Investigation of hormonal influence, assuming menopause/andropause occurs at ages 53, 54, 55, 56, and 57, respectively. The upper plot
is for males and the lower plot is for females. Each yellow-purple bar pair indicates the accuracy before and after menopause at a specific age. The
dataset used for this analysis corresponds to the years 2009-2016.

Figure 14 shows that the difference in recognition rate for males
does not change obviously between the “before” and “after”
age threshold, but it does for females within each subset. This
means that sex hormones play an important role in FLD
prediction for females. In other words, the greater the effect of
sex hormones will result in a higher recognition rate for
prediction.

For females, sex hormones will be affected not only by the
lifestyle habits an individual engages in to maintain a good
figure but also by factors such as dieting and drugs. To achieve
a slim figure, many women try various types of diets that have
several side effects, which may affect specific biochemical tests
related to FLD. In addition, some women may resort to the
ingestion of nutritional supplements or other forms of “diet
pills” to lose weight. However, many of these drugs contain
unknown ingredients or illegal substances that could
significantly affect the results of tests associated with FLD.

Experiment 3: LSTM for NVP
In this experiment, we used LSTM with various setups for NVP.
LSTM is a well-known sequence classifier that can use
information from historical visits, with no length limit, to predict
the possibility of FLD at the patient’s next clinic visit. As
explained earlier, from the perspective of preventive medicine,
NVP is much more important than CVP. The specifications for
feature selection of NVP are as follows: dataset, male subjects
in the MJ-FLD dataset; classifier, LSTM; feature selection,
OPR with 3-fold cross-validation to select the most important
24 features.

In general, clinic visits do not always occur at regular intervals.
For a given visit pattern of length N, we can extract N – 1
input-output pairs for NVP modeling using LSTM, as shown
in Figure 15 where N=5. To deal with this situation of
nonregular intervals, we designed two types of LSTM that have
two types of feature sets. In feature set 1 with fixed intervals,
interpolation was performed to obtain a fixed-interval input
sequence to our sequence classifier. For instance, the input can
have a fixed interval of 1 month and the output can be 12 months
into the future, as shown in Figure 16. If the next visit is less
than or equal to 12 months away from the current visit, then we
can easily perform interpolation for the input. However, if the
next visit is more than 12 months away from the current visit,
then we simply duplicate the data at the current visit to the
subsequent months until we have enough data to perform NVP.
In feature set 2 with variable intervals, we used the visit pattern
directly with extra inputs to preserve the interval information
and target time for prediction. For instance, if we have d features
for a visit, then the number of inputs should be d+2, with the
additional first feature indicating the time span from the previous
visit and the additional second feature indicating how far in the
future the prediction should be made, as shown in Figure 17.

For feature set 1 with fixed-interval data, the dataset included
the number of input/output pairs for males (13,315) and for
females (10,998). The mean input sequence length for males
and females was 42.03 (SD 21.25, range 5-96) and 41.44 (SD
20.84, range 4-96), respectively. For feature set 2 with
variable-interval data, there were 16,081 input/output pairs for
males with a mean input sequence length of 3.32 (SD 1.46,
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range 2-13), and 13,364 input/output pairs for females with a
mean input sequence length of 3.15 (SD 1.35, range 2-15).

Feature set 2 with input data from variable intervals showed
three major advantages: (1) the unfolded LSTM network has

considerably fewer stages, resulting in much shorter training
and prediction times; (2) the dataset is used directly with no
need to perform extra interpolation in advance, thus reducing
time requirements and increasing precision; and (3) it can
perform any prediction at any time in the future directly.

Figure 15. A typical visit pattern and the extracted input/output pairs for training long short-term memory (LSTM). If the visit pattern is denoted by
[v1, v2, v3, v4, v5], then we can extract 4 input/output pairs for training LSTM: {v1⇒v2}, {v1,v2⇒v3}, {v1, v2, v3⇒v4}, {v1,v2,v3,v4⇒v5}. Note
that patients with only a single visit are discarded in this next-visit prediction task.

Figure 16. To create fixed-interval data for feature set 1, we need to perform interpolation on the input/output parts. For this case, the input part is
interpolated to have a fixed interval of 1 month and the output part is interpolated to have a time distance of 12 months from the nearest time of the
input.

Figure 17. To create variable-interval data for feature set 2, we need to add two extra inputs to long short-term memory, including the time span from
the previous visit and the time span to the future point at which the prediction occurs.

First, the input/output pairs used to train feature set 1 (with 24
features for males in the dataset) were prepared as follows. All
patients with only a single visit were removed from the dataset,
reducing the total number of males from 34,856 to 22,972. From
the historical data for each patient, we interpolated data between
any two consecutive visits to the monthly values. For a specific
visit (excluding the last one), the first 12 months of the
interpolated data right before the visit were used as the feature
set 1 input, while the interpolated output at 12 months right
after the visit was used as the output. The input-output data
pairs were then collected using moving windows with a stride
of 1 month.

The final count of input-output data pairs for trained feature set
1 with 24 features was 469,159. These data pairs were divided
into 70% used for training (10% of which was used for
validation) and 30% used for testing, all with stratified
partitioning. All training options and parameters for LSTM are
listed in Multimedia Appendix 1. Figure 18 shows the training
and validation accuracy/loss vs epochs during the training
process. As usual, the best model was selected at the epoch
where the validation loss reached its minimum or the validation
accuracy reached its maximum. In this case, the best model was
selected at epoch 93 where the validation accuracy reached its
maximum of 81.72%.
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Based on the above process, we then performed OPR on top of
feature set 1 to derive 24 features. As shown in Figure 19, when
compared with the expert-selected features, the OPR-selected
features achieved an IoU of 29.73% and a coverage of 45.83%,
which is satisfactory based on the opinions of the domain experts

we consulted. By contrast, the OPR on top of feature set 2
achieved an IoU of 23.08% and the coverage was 37.50%. All
results for feature sets 1 and 2 are shown in Table 5. The
AUROC, precision, recall, and F1 scores are shown in Table 6.

Figure 18. The accuracy (upper plot) and loss (lower plot) for training and validation during the training of feature set 1 for male subjects of the MJ-FLD
dataset. The best model was selected at epoch 93 where the validation accuracy reached its maximum of 81.72%.

Figure 19. Features selected by one-pass ranking based on feature set 1, ranked by accuracy.

Table 5. Comparison of intersection over union (IoU), coverage, and accuracy of the features selected by one-pass ranking (OPR) and domain experts
in the two feature sets.

ExpertsOPRMetric

Feature set 2Feature set 1Feature set 2Feature set 1

N/AN/Aa23.08% (9/39)29.73% (11/37)IoU

N/AN/A37.50% (9/24)45.83% (11/24)Coverage

74.95%75.40%77.32%75.91%Accuracy

N/AN/A14525875Computing time (seconds)

aN/A: not applicable.
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Table 6. Comparison of performance, computing time, and error reduction rate with five long short-term memory (LSTM)-based classifiers.

Error reduction rateComputing time (s)AccuracyF1 scoreRecallPrecisionAUROCaClassifier

LSTM

FSIb

5.33%271376.54%0.750.740.750.83Males

30.86%248581.90%0.790.780.800.88Females

FS2c

16.42%146679.29%0.780.770.780.86Males

26.70%146980.81%0.780.770.790.87Females

biLSTMd

FS1

5.81%338076.66%0.750.740.750.83Males

30.10%315581.70%0.790.780.810.88Females

FS2

15.74%178979.12%0.780.770.780.87Males

26.63%180080.79%0.780.770.790.88Females

Stack-LSTM

FS1

8.11%376477.23%0.750.750.760.84Males

30.75%352481.87%0.790.780.800.88Females

FS2

16.55%195279.32%0.780.770.780.87Males

25.55%201680.51%0.780.770.790.87Females

Stack-biLSTM

FS1

6.54%608576.84%0.750.750.760.84Males

30.37%542981.77%0.790.780.800.88Females

FS2

16.42%271479.29%0.780.770.780.87Males

26.59%280280.78%0.780.770.790.88Females

Attention-LSTM

FS1

8.43%N/Ae77.31%0.810.800.830.84Males

26.70%N/A80.81%0.740.790.690.89Females

FS2

12.67%N/A78.36%0.820.770.870.87Males

29.18%N/A81.46%0.750.810.700.89Females

aAUROC: area under the receiver operating characteristic curve.
bFS1: feature set 1.
cFS2: feature set 2.
dbiLSTM: bidirectional long short-term memory.
eN/A: not applicable.

We next compared the performances of feature sets 1 and 2 to
two baseline models, as shown in Figure 20. The predictor for

baseline 1 always outputs the class with a larger percentage in
the ground truth. In the case of the MJ-FLD dataset, the output
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is always NFLD. Baseline 2 is a simple inference model that
always outputs the class of the previous visit. In other words,
the prediction is based on the ground truth of the previous visit.

The test accuracy of NVP using feature set 1 (with fixed
intervals) and feature set 2 (with variable intervals) for males
was 77.31% with Attention-LSTM (8.43% error reduction) and

79.32% with Stack-LSTM (16.55% error reduction),
respectively. The error reduction rates were compared with a
baseline model of simple inference. For females, the
corresponding values were 81.90% with LSTM (30.86% error
reduction) and 81.46% with Attention-LSTM (29.18% error
reduction). The error reduction rates of four classifiers for males
and females are listed in Table 6.

Figure 20. Accuracy for two baseline models and 10 long short-term memory (LSTM) models for males and females. biLSTM: bidirectional LSTM.

Table 5 shows the IoU and coverage rates of OPR-selected
features based on feature sets 1 and 2. The accuracy of feature
set 2 was comparable with that of feature set 1 for both males
and females. However, the training times were 5875 and 1452
seconds, respectively, indicating that the proposed feature set
2 provides much better efficiency. Note that it is almost
impossible to perform SFS in this case due to its lengthy
computation. Moreover, for both feature sets 1 and 2, the
accuracy results of OPR-selected features (78.20% and 76.79%)
were higher than those of the expert-selected features (75.40%
and 74.95%), indicating the feasibility of OPR for feature
selection of a large dataset with a complex model of LSTM.

For feature set 2, we discarded patients with a single visit to
obtain 76,172 input-output pairs; therefore, the number of male
patient visits dropped from 34,856 to 22,972. The results of
OPR-selected features are listed in Table 2 for comparison. Note
that the table does not include feature set 2–based SFS, simply
because the computational time for SFS with feature set 2 takes
more than 7 days.

Discussion

Principal Findings
The computing time of OPR was much lower than that of SFS;
however, it can achieve comparable performance (in terms of
the overlap between the automatically selected features and the
manually selected features) as SFS, especially when dealing
with a large-scale dataset with high-dimensional features. The
best model for CVP was KNNC for males (80.00%) and SVM

for females (83.44%). The best model for NVP was Stack-LSTM
using feature set 1 (79.32%) for males and LSTM using feature
set 2 (81.90%) for females.

For NVP, the proposed feature set 2 is highly flexible and can
achieve comparable results to those obtained with feature set
1; however, the computing time is much shorter, and the
prediction can be derived at any time in the future. Both feature
sets 1 and 2 outperformed a simple inference model (baseline
2), achieving an error reduction of 16.53% (Stack-LSTM) for
males and 30.86% (LSTM) for females.

As shown in Table 4, by comparing two rows of SVM/male
and KNNC/male, we can observe that SVM outperformed
KNNC in all metrics except for accuracy. As a result, for males,
SVM can be used to replace KNNC if accuracy is not the only
concern. According to Figure 9 and Figure 13, the CVP for
females was consistently better than that for males. This is
simply due to the fact that the female dataset is more imbalanced
than the male dataset. To demonstrate this, we computed the
imbalance factors (data size of the bigger class divided by that
of the smaller class) across 8 years: (1.45, 1.49, 1.58, 1.60, 1.52,
1.47, 1.57, 1.60) for males and (2.09, 2.16, 2.0, 1.93, 1.94, 2.1,
1.89, 1.96) for females. Therefore, the imbalance factors for
females are consistently higher than those for males, leading to
better accuracy for the female dataset.

For CVP, the influence of hormones for females was more
intense than that for males, leading to difficulty in FLD
prediction for females after menopause, as shown in Figure 14,
where the difference in accuracy before and after menopause
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age is more dramatic for females than for males. In other words,
hormones play an important role for FLD prediction in females.
However, after menopause, women lose protection from sex
hormones, which can increase the risk of chronic and/or
metabolic diseases. This would make FLD prediction harder
due to women’s imbalanced postmenopausal physiology.

For males in Figure 14, the accuracy of the “bigger-age group”
is higher than that of the “smaller-age group.” This difference
is not related to hormones since men do not exhibit obvious
menopause. It is more likely due to the data imbalance, as
demonstrated by the imbalance factors of the “smaller-age
group” at (1.54, 1.56, 1.57, 1.58, 1.59) and “bigger-age group”
at (1.78, 1.70, 1.71, 1.67, 1.64). Note that a higher imbalance
factor usually leads to higher accuracy.

In Table 6 for NVP, the best classifiers are Stack-LSTM (using
feature set 2) for males and LSTM (using feature set 1) for
females. This indicates that there is no single model and no
single feature set that are best for both males and females.

It should be noted that by using Attention-LSTM with feature
set 2, the accuracy only dropped by 0.96% for female FLD
prediction and by 0.44% for male FLD prediction. The
advantages in using feature set 2 include better efficiency in
training/evaluation and more flexible prediction at any future
time. Thus, if efficiency and flexibility are major concerns, we
can sacrifice accuracy to a certain degree to achieve high
efficiency and flexibility.

Conclusions and Future Work
This study explored the use of a large health checkup dataset
for FLD prediction in terms of current-visit and next-visit
predictions. We used OPR and SFS for feature selection in CVP
and then compared the results against expert-selected features.

In our experiment with CVP, OPR was more efficient and
provided comparable results with those obtained using SFS in
terms of classification accuracy and the similarity between the
automatically selected features and the expert-selected features.

For NVP, we propose two feature sets (feature sets 1 and 2) for
various LSTM models. For females, the best accuracy of 81.90%
was obtained when using feature set 1 for LSTM. For males,
the best accuracy of 79.32% was obtained when using feature
set 2 for LSTM. This indicates that the best models and best
features are gender-dependent. However, it should be noted that
feature set 2 is a much more compact representation; thus, it
requires less time for training/evaluation, and there is no need
for prior feature interpolation. Moreover, the model trained by
feature set 2 is more flexible and it allows for FLD prediction
at any time in the future.

In practice, NVP is much more valuable from the perspective
of preventive medicine since whenever a positive prediction
occurs, the physician can suggest lifestyle changes to prevent
FLD at the next visit. To our knowledge, this is the first use of
machine learning for NVP using a large-scale dataset.

Our immediate future work will focus on extending our
LSTM-based NVP system to develop a comprehensive
recommendation system, in which precise and personal
recommendations will be given to prevent the potential future
development of FLD, such as reduction in alcohol consumption,
weight loss, and increased exercise. Such precise, personalized
recommendations can be made based on patient clustering
according to influential features. In general, such a system for
preventive treatment can also be extended to other chronic or
metabolic syndrome diseases, as long as we have a large dataset
that covers many years for longitudinal studies.
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